Recent Status Updates

  • acedildo

    Safety Alert
    Safety Alert-29-December-2016-Bird Flu resurfaces in India.pdf
    · 0 replies
  • haytham

    Is it possible to help me
    I want a course or a book about
    Industrial Safety
    Inside industrial plants
    Or at sites such as shipbuilding, installations-oil
    · 0 replies
  • Armypinion

    Hello everyone! I'm new here. i am a Mechanical engineering student. currently a 3rd year student. i'm here because i need some help about my project, it would be great if the project is not expensive but a creative one. any ideas guys?  please help me. we will proposed it this thursday. 
    · 0 replies
  • Timothy L Dennison

    I don't know how to optimize this, but I have made a lot of progress
    Chimecycle motion analysis
    · 1 reply
  • Mokhtar Bekhadra

    Is the power of lifting in wing of aircraft Produced by the princip of Newton Action/Reaction in intrados of wing or or Bernoulli princip Pressure drop in the extrados of wing produces by the velocity and turbulence?? 

    · 0 replies

Image Comments



  • Blogs

    1.     Mechanics Corner
          A Journal of Applied Mechanics and Mathematics by DrD
          © Machinery Dynamics Research, 2017


      Last Post
      Time to Hang It Up

         
      This will be the final post of Mechanics Corner here on Mechanical Engineering Forums. It has run almost exactly two years, and there have been ups and downs along the way. In this final post, I want to reflect a bit on my original goals for the blog, and also on what has actually happened.

      When our host first proposed to me that I might write a blog for ME Forums, I was excited about it. About half of my career had been spent in engineering education, and I always loved working with students. It seemed like a way to get back to something that I had long enjoyed, and so I accepted his suggestion.

      A long time ago, back when I was about 14 or 15 years old, in Junior High School, my shop teacher mentioned, in an off-hand way in class, that various curves could be described mathematically. I’d never heard that before, but I thought immediately, “This has interesting possibilities.” Moving ahead a few years, I discovered that I wanted to study and build my career around was the area known as Applied Mechanics, although it was a time before I first heard that term. In my freshman physics class, I discovered the laws of motion, and thought to myself, “This is great stuff! I can use math to describe how things move!” All of that happened back in the 1950s, and I’m still doing the same thing today (some might say I am in a rut!).

      As a teacher, I taught mostly undergraduate engineering courses, although I taught my share of graduate courses as well. It was the undergraduate courses that I liked most, because I firmly believe that the economy of a nation is strongly dependent on the quality of the baccalaureate level engineers produced in that nation. Engineers with graduate degrees are valuable as well, but the vast majority of the national engineering workload falls to BS level engineers.    Thus, I envisioned Mechanics Corner as a sort of continuation of the several undergraduate courses I most enjoyed teaching — kinematics, dynamics of machines, vibrations, and mechanics of materials. For the most part, I have stuck to the plan, so that most of the technical posts I have made have dealt with problems that I considered suitable for undergraduate engineering students, say perhaps, junior level. I have posted a few topics from my industrial experience, but those have been situations that baccalaureate level engineers would be expected to handle.

      Now I knew it would not be exactly like continuing to teach my classes. In particular, you would not have any homework or tests, and I would not have any grading to do – a win-win, or so I thought. I did hope, that even with no assigned homework, readers would take an interest in the problems discussed, even to the point of working through the details for themselves (I was terribly naive, apparently!). I knew from my own experience that the only way I ever really learned a new idea was to get in and work with it, work some problems, make some numbers, plot some curves, until I really understood what it was all about. I’ll venture to say that nobody ever learned any technical material simply by reading only.

      In actual fact, in the early days, I had one or two folks say that they would in fact work through the problems, so I was encouraged. What I was not prepared for, however, was the fact that the vast majority never seemed to even read very carefully, much less work through the problems! The questions that have come, and there have been a few, have largely been about matters totally unrelated to the posts. The most common question has been, “Suggest a topic for my final project,” which relates to not a single post. Needless to say, that aspect of my vision was totally unfulfilled.

      But there is another side. I ventured to write a few “philosophical” articles, items dealing with academic integrity and cheating, with how to ask for help, with how to write a report or a paper, and various other matters. I really thought all of this would be considered obvious and trivial, so I was completely unprepared for the excitement that some of these articles generated. There were, in some cases, many, many comments, and people seemed to really be interested. I’m left to wonder: why? Are these ideas foreign to the culture of India and SE Asia? Are these things not all taught at home and in the public schools? I don’t know, but there was a lot of interest in these matters.

      But Mechanics Corner was intended to be primarily a technical blog, and there, it just did not excite the interest of the readership. As time passed, there was less and less interest. First, the comments dropped off to just about zero, and later, there were fewer and fewer who even bothered to “like” the articles. Finally, the number of reads has dropped to almost nothing (there may be no one left to read this final note). Well, there could hardly be any more clear indication that it is time to stop.

      I asked for opinions about this from some of the administrators, and was told that the blog was just over the heads of the readership. That makes me sad; that was never the intent. If it is true, I do not see how engineering has a very bright future among this readership. Even so, I wish all of you the best for your careers. I hope that you are able to find rewarding and beneficial work in which you will be happy and make a real contribution to your societies.

      To use an old cowboy metaphor perhaps familiar to many of you from Bollywood, “It is time to hang up the bridle and saddle, and say, ‘Adios’ (Adios is literally, “to God”).

       

      • 0
        entries
      • 0
        comments
      • 113
        views

      No blog entries yet

    2. Hydraulic cylinders haven’t really changed a lot over the years. The manufacturing processes are much more streamlined and the tolerances are much tighter, but for the most part cylinders are still the hard working push/pull tools they have always been. These things have literally shaped the world around us. Anything that gets lifted, pushed, hauled, dumped, dug, crushed, drilled or graded has gotten that way by some truck, crane, dozer or tractor using a hydraulic cylinder. But how do hydraulic cylinders work?
      The amazing amount of force a cylinder exerts is due to the simple mechanical principle of pressure exerted on the surface area of the
      piston . Simply put, the larger the diameter of the cylinder, the more it will lift. 

      Cylinder cutaway.png

      hydraulic.jpg

    3. I get great satisfaction when working with my hands. When I do so I always ask why the item I am working on is as it is. One source of frustration I believe many have experienced it the lack of tool access. Sometimes n-1 fasteners are a breeze to access and the nth takes more time to remove than all the other combined.

      I don’t recall from my machine design class ever addressing this real world situation. I learned how to size bolts, bearings, and cross-sections but I don’t recall any mention of tool access. I learned there existed standards for tool access when I entered industry. In the auto industry one thing you tried to avoid was the need for special tool kits. These were not cheap and every automobile dealer and repair shop needs to purchase the special kits if they intend to make the particular repair. As much as this was avoided 30 years ago (and I assume still today) these special kits existed.

      While working in a different industry we were cleaning up a lab area. I came across an Allen Wrench (hex key) that did not make the usual 90 degree bend. It brought to mind the special kits I mentioned above. It had been modified to have a second bend nearly 90 degrees. I taped it to the wall in the design department with the following note. Do Not Design Anything That Needs a Tool Like This!

      There are reasons a lack of tool access happens. Parts designed for one application may have been created with adequate access. The same item is later used on a different application and the surrounding space is already accounted for. But there are cases where there simply is not enough thought applied or too many bean counters controlling the design function.

      As the Wyoming winter approaches there are things that need attention. Today two of those frustrations had to be addressed.

      I have a generator for times when power goes out and an ATV (all terrain vehicles) for snow removal. Both have batteries for starting. Battery removal is more difficult than it should be for both.The generator can be manually started but if needed when it is -20F (-29C) that can be quite an effort.

      For the ATV the battery is held in place with two screws and a padded flat metal bar across the width of the battery. This is an (n-1) example. One of the two screws has plenty of access and the other is under a plastic housing. What would make it more user friendly (for those who buy the products) would be to make the end of the retaining bar that is under the plastic housing, slip into a slot of some kind. The other end which is very accessible would use the one screw. This would eliminate one fastener, eliminate the captured nut or tapped hole (can’t see what is there) and make battery removal so much easier for little or no cost.

      My solution which could easily be incorporated at the factory was to cut a slot on the end of the bar with poor tool access. Doing so eliminated the need to remove the hidden fastener. Just loosen enough to slip the retaining bar out then back in. You can rotate the retainer but it must pass over the positive terminal and the bar is grounded to the frame. Better to remove it. 

      For the generator I speculate this is the multi application issue. The same design is sold with and without battery start. These options don’t come cheap and if as in the auto industry, have a handsome margin. So why punish the big spenders?

      The panel with all the outlets is welded to the frame. The panel extends quite a distance down to provide a billboard for the power rating. Behind the immovable plate lies the battery. Accessing the battery retainers and cables would be simple if the lower portion of the plate was either detachable or eliminated. Since I don’t transport the generator I leave the retainers off. Access to the cables is still more difficult than it need be.

      So for those who have not yet entered industry let these two examples provide food for thought when you are designing equipment. Many small improvements can be incorporated for little or no cost prior to production release of the design.

      Those about to enter industry seek out the senior engineers and ask for the standards books. Spend some time, even your own time, skimming through the manuals. They contain thousands of man-years of experience. Also spend time in the manufacturing and service facilities if possible. These efforts will provide an insight to what is not taught in class.

      Photo 1 Is a top down view of the battery retainer. 

      Photo 2 You can see the hidden fastener and the modification to the retainer.

      Photo 3 Is the generator. The bottom half of the battery can be seen.

      Photo 4 Is the side view of the battery.

      Photo 5 Shows the bottom half of the battery more clearly than photo 3.

      DSC02513.JPG

      DSC02514.JPG

       

      DSC02515.JPG

      DSC02517.JPG

      DSC02518.JPG

  • Popular Contributors

  • Top Downloads

  • Topics

  • Member Statistics

    119,103
    Total Members
    2,189
    Most Online
    Arturo
    Newest Member
    Arturo
    Joined
  • Who's Online   7 Members, 0 Anonymous, 182 Guests (See full list)