Jump to content
Mechanical Engineering Community

Leaderboard


Popular Content

Showing content with the highest reputation since 06/19/2018 in all areas

  1. 5 points

    Version 1.1.0

    33,269 downloads

    A COMPLETE INSTRUCTOR AND STUDENT SUPPLEMENT PACKAGE - Continued These ppts are set of instructor and student supplements. . A FOCUS ON DIAGNOSIS AND PROBLEM SOLVING The primary focus of these ppts is to satisfy the need for problem diagnosis. Time and again, the author has heard that technicians need more training in diagnostic procedures and skill development. To meet this need and to help illustrate how real problems are solved, diagnostic stories are included throughout. Each new topic covers the parts involved as well as their purpose, function, and operation, and how to test and diagnose each system.
  2. 4 points
    tractors and Backhoe loaders are supposed to maintain a constant depth in ploughing/digging. For this it requires the movement of the body to be restricted so that we dont disturb the main tractor functions. If we have a suspended tractor which bounces too much over undulations in a field then we cannot expect the implement to have a constant ploughing depth which is a requirement in agriculture.
  3. 3 points
    DrD

    What Makes A Ship Move?

    Mechanics Corner A Journal of Applied Mechanics and Mathematics by DrD, #47 What Makes a Ship Move? One of the problems that often confronts engineers is the description of large, interconnected systems. Engineers tend to specialize, so that one is very knowledgeable on gears, another knows bearings, a third knows pumps, but none of them are comfortable with the whole system. In the automotive context, this is often expressed as, "How does the engine cause the car to move forward?" On the one hand, most engineers can describe the process in words, but they are far less quick to talk about equations for the whole system. Here, I will address a similar modeling question in the marine context, "What makes a ship move?" WhatMakesAShipMove.pdf
  4. 3 points
    Selection of material is an important aspect for manufacturing industries . The quality of product is highly depends upon its material properties. These properties are used to distinguish materials from each other. For Example: A harder material is used to make tools.A ductile material is used to draw wires. So the knowledge of mechanical properties of material is desirable for any mechanical student or for any person belongs to mechanical industries. This post brings top 18 mechanical properties. Mechanical properties of material: There are mainly two types of materials. First one is metal and other one is non metals. Metals are classified into two types : Ferrous metals and Non-ferrous metals. Ferrous metals mainly consist iron with comparatively small addition of other materials. It includes iron and its alloy such as cast iron, steel, HSS etc. Ferrous metals are widely used in mechanical industries for its various advantages. Nonferrous metals contain little or no iron. It includes aluminum, magnesium, copper, zinc etc. Most Mechanical properties are associated with metals. These are #1. Strength: The ability of material to withstand load without failure is known as strength. If a material can bear more load, it means it has more strength. Strength of any material mainly depends on type of loading and deformation before fracture. According to loading types, strength can be classified into three types. a. Tensile strength: b. Compressive strength: 3. Shear strength: According to the deformation before fracture, strength can be classified into three types. a. Elastic strength: b. Yield strength: c. Ultimate strength: #2. Homogeneity: If a material has same properties throughout its geometry, known as homogeneous material and the property is known as homogeneity. It is an ideal situation but practically no material is homogeneous. #3. Isotropy: A material which has same elastic properties along its all loading direction known as isotropic material. #4. Anisotropy: A material which exhibits different elastic properties in different loading direction known as an-isotropic material. #5. Elasticity: If a material regain its original dimension after removal of load, it is known as elastic material and the property by virtue of which it regains its original shape is known as elasticity. Every material possess some elasticity. It is measure as the ratio of stress to strain under elastic limit. #6. Plasticity: The ability of material to undergo some degree of permanent deformation without failure after removal of load is known as plasticity. This property is used for shaping material by metal working. It is mainly depends on temperature and elastic strength of material. #7. Ductility: Ductility is a property by virtue of which metal can be drawn into wires. It can also define as a property which permits permanent deformation before fracture under tensile loading. The amount of permanent deformation (measure in percentage elongation) decides either the material is ductile or not. Percentage elongation = (Final Gauge Length – Original Gauge Length )*100/ Original Gauge Length If the percentage elongation is greater than 5% in a gauge length 50 mm, the material is ductile and if it less than 5% it is not. #8. Brittleness: Brittleness is a property by virtue of which, a material will fail under loading without significant change in dimension. Glass and cast iron are well known brittle materials. #9. Stiffness: The ability of material to resist elastic deformation or deflection during loading, known as stiffness. A material which offers small change in dimension during loading is more stiffer. For example steel is stiffer than aluminum. #10. Hardness: The property of a material to resist penetration is known as hardness. It is an ability to resist scratching, abrasion or cutting. It is also define as an ability to resist fracture under point loading. #11. Toughness: Toughness is defined as an ability to withstand with plastic or elastic deformation without failure. It is defined as the amount of energy absorbed before actual fracture. #12. Malleability: A property by virtue of which a metal can flatten into thin sheets, known as malleability. It is also define as a property which permits plastic deformation under compression loading. #13. Machinability: A property by virtue of which a material can be cut easily. #14. Damping: The ability of metal to dissipate the energy of vibration or cyclic stress is called damping. Cast iron has good damping property, that’s why most of machines body made by cast iron. #15. Creep: The slow and progressive change in dimension of a material under influence of its safe working stress for long time is known as creep. Creep is mainly depend on time and temperature. The maximum amount of stress under which a material withstand during infinite time is known as creep strength. #16. Resilience: The amount of energy absorb under elastic limit during loading is called resilience. The maximum amount of the energy absorb under elastic limit is called proof resilience. #17. Fatigue Strength: The failure of a work piece under cyclic load or repeated load below its ultimate limit is known as fatigue. The maximum amount of cyclic load which a work piece can bear for infinite number of cycle is called fatigue strength. Fatigue strength is also depend on work piece shape, geometry, surface finish etc. #18. Embrittlement: The loss of ductility of a metal caused by physical or chemical changes, which make it brittle, is called embrittlement.
  5. 3 points
    Get a chance to win - Religion Engineer Caste Mechanical Tshirt You can also buy it from https://teespring.com/mechanical-engineering-tees_eu What you need to do Reply only once the following Your name Your Engineering College Year of completing the degree Make sure the t-shirt image is not posted again in your reply..... Last Date to receive entries for T-shirts - Oct 8th 2018 Number of Tees will be given as per the received entries 100 to 499 Entries received 1 T-shirt 500 to 999 Entries 2 T-shirts 1000 or more Entries 5 T-shirts There will be lucky draw to find the winners...and name of Winners will be informed on Oct 10th. This is only available to mechanical engineering professionals. This give away is to encourage participation among members. All rights and decisions are reserved with team of the website. Lets start introduction... Just follow the rules... Do not post anything in between... just be professional.
  6. 3 points
    1. It's not oil the best name is brake fluid as it consists a lot of material inside such as (silicone, glycol ether/borate ester, mineral oil) 2. One of the main things for BF, it must have a high boiling point to avoid vaporizing in the lines this is why we need to change the brake fluid from time to time as it has tendency to absorb water which will lower its boiling temperature leading to change part of the fluid into moisture and vapour inside the brake circuits and this will create vapour lock leading to being compressible and once it became compressible the brake foot force will not be transferred to the other brake parts (cylinders,brake pistons, ...) We have many types of BF each has its own dry/wet boiling temperature such as:- DOT3 (dry 205C/401F- wet 140C/284F) DOT4 (dry 230C/446F - wet 150C/311F) DOT5 (dry 260C/500F - wet 180C/365F) *Hygroscopic means (water absorbing)
  7. 2 points
    Cracks do not grow by themselves. Most cracking is due to fatigue, and that requires motion. A motionless car will not crack. DrD
  8. 2 points
    DrD

    What Makes A Ship Move?

    What has happened? Is the sky falling? This is unprecedented!! A well thought out response to one of my posts! I am simply stunned!!! Thank you, HKS! This is the first time I have ever seen such a good response to a post. You asked about learning whole system level modeling. I suggest that you might simply want to pick some everyday systems and try to model them. A car or motorcycle is an obvious choice, but there are others such as a railroad train (starting/stopping/running down the track), a rolling mill (if you are familiar with how such systems are built), a diesel engine driven generator starting a pump motor load, or perhaps a soda bottle filling machine. At the time I first wrote this article, some 15 years ago, I was working for the US Navy in a propulsion engineering group. Most of the engineers around me were EEs, because we were looking at electric drive for ships. I found that most of them did not know much about motors, much less the rest of the system. Their knowledge was largely limited to power electronics for speed control of electric motors. They has no idea how that related to ship motion. DrD
  9. 2 points
    1. What is the difference between scavenging and supercharging ? Ans: Scavenging is process of flushing out burnt gases from engine cylinder by introducing fresh air in the cylinder before exhaust stroke ends. Supercharging is the process of supplying higher mass of air by compressing the atmospheric air. 2. What are the names given to constant temperature, constant pressure, constant volume, constant internal energy, constant enthalpy, and constant entropy processes.Ans: Isothermal, isochroic, isobaric, free expression, throttling and adiabatic processes respectively. 3. In a Rankine cycle if maximum steam pressure is increased keeping steam temperature and condenser pressure same, what will happen to dryness fraction of steam after expansion ?Ans: It will decrease. 4. Why entropy change for a reversible adiabatic process is zero ? Ans: Because there is no heat transfer in this process. 5. What are two essential conditions of perfect gas ? Ans: It satisfies equation of state and its specific heats are constant. 6. Enthalpy and entropy are functions of one single parameter. Which is that ? Ans: Temperature. 7. Why rate of condensation is higher on a polished surface compared to rusty surface ? Ans: Polished surface promotes drop wise condensation and does not wet the surface. 8. How much resistance is offered to heat flow by drop wise condensation ? Ans: Nil How are these questions - please do add comments and if you like them please do share this post on facebook, linkedin, twitter and google plus. 9. What is the relationship between COP of heating and cooling ? Ans: COP of heating is one(unity) more than COP of cooling. 10. How much is the work done in isochoric process ? Ans: Zero. 11. When maximum discharge is obtained in nozzle ? Ans: At the critical pressure ratio. 1. Under what condition the work done in reciprocating compressor will be least ? Ans: It is least when compression process approaches isothermal. For this purpose, attempts are made to cool the air during compression. 13. What is the difference between stalling and surging in rotary compressions ? Ans: Stalling is a local phenomenon and it occurs when How breaks away from the blades. Surging causes complete breakdown of flow and as such it affects the whole machine. 14. Why the electric motor of a fan with backward curved blades is never got overloaded under any condition ? Ans: The maximum power is consumed at about 70% of maximum flow in case'of fan with backward blades. For higher flow, power consumption gets lower. 15. Why the work per kg of air flow in axial flow compressor is less compared to centrifugal compressor for same pressure ratio ? Ans: Isentropic efficiency of axial flow compressor is higher. 16. What is the name given to portion of thermal energy to be necessarily rejected to environment ? Ans: Anergy. 17. What is pitting ? How it is caused ? Ans: Non uniform corrosion over the entire metal surface, but occuring only in small pits is called pitting. It is caused by lack of uniformity in metal. 18. What is caustic embrittlement ? Ans: It is the actual physical change in metal that makes it extremely brittle and filled with minute cracks. It occurs particularly in the seams of rivetted joints and around the rivet holes. 19. Which impurities form hard scale and which impurities soft scale ? Ans: Sulphates and chlorides of lime and magnesium form hard scale, and carbonates of lime and magnesium form soft scale. 20. What is the difference between hard water and soft water ? Ans: Hard water contains excess of scale forming impurities and soft water contains very little or no scale forming substances. 21. Which two elements in feed water can cause corrosion of tubes and plates in boiler ? ' Ans: Acid and oxygen in feed water lead to corrosion. 22. What should be done to prevent a safety valve to stick to its seat ? Ans: Safety valve should be blown off periodically so that no corrosion can take place on valve and valve seat. 23. Why large boilers are water tube type ? Ans: Water tube boilers raise steam fast because of large heat transfer area and positive water circulation. Thus they respond faster to fluctuations in demand. Further single tube failure does not lead to catastrophy. 24. What type of boiler does not need a steam drum ? Ans: Super-critical pressure boiler. 25. Why manholes in vessels are usually elliptical in shape ? Ans: Elliptical shape has minimum area of opening and thus plate is weakened the least. Further it is very convenient to insert and take out the cover plate from elliptical opening. 26. Low water in boiler drum is unsafe because it may result in overheating of water tubes in furnace. Why it is unsafe to have high water condition in boiler drum ? Ans: High drum level does not allow steam separation to be effective and some water can be carried over with steam which is not desirable for steam turbine. 27. Why boiler is purged everytime before starting firing of fuel ? Ans: Purging ensures that any unburnt fuel in furnace is removed, otherwise it may lead to explosion. 28. What is the principle of mechanical refrigeration ? Axis. A volatile liquid will boil under the proper conditions and in so doing will absorb heat from surrounding objects. 29. Why high latent heat of vaporisation is desirable in a refrigerant ? Ans: A high latent heat of vaporisation of refrigerant results in small amount of refrigerant and thus lesser circulation system of refrigerant for same tonnage. 30. What is the critical temperature of a refrigerant ? Ans: Critical temperature is the maximum temperature of a refrigerantrat which it can be condensed into liquid and beyond this it remains gas irrespective of pressure applied. 31. Maximum combustion temperature in gas turbines is of the order of 1100 to 10°C whereas same is around 00°C in I.C. engine ? Why ? Ans: High temperature in I.C. engine can be tolerated because it lasts for a fraction of second but gas turbines have to face it continuously which metals can't withstand. 32. Why efficiency of gas turbines is lower compared to I.C. engines ? Ans: In gas turbines, 70% of the output of gas turbine is consumed by compressor. I.C. engines have much lower auxiliary consumption. Further combustion temperature of I.C. engines is much higher compared to gas turbine. 33. What do you understand by timed cylinder lubrication ? Ans: For effective lubrication, lub oil needs to be injected between two piston rings when piston is at bottom of stroke so that piston rides in oi during upward movement. This way lot of lub oil can be saved and used properly. 34. What is IIUCR in relation to petrol engine ? Ans: HUCR is highest useful compression ratio at which the fuel can be used in a specific test engine, under specified operating conditions, without knocking. 35. In some engines glycerine is used in place of water for cooling of engine. Why ? Ans: Glycerine has boiling point of 90°C which increases its heat carrying capacity. Thus weight of coolant gets reduced and smaller riadiator can be used. 36. Why consumption of lubricating oil is more in two-stroke cycle petrol engine than four-stroke cycle petrol engine ? Ans: In two-stroke engine lub oil is mixed with petrol and thus some lub oil is blown out through the exhaust valves by scavenging and charging air. There is no such wastage in four stroke petrol engine. 37. As compression ratio increases, thermal n increases. How is thermal n affected by weak and rich mixture strength ? Ans: Thermal n is high for weak mixture and it decreases as mixture strength becomes rich. 38. How engine design needs to be changed to burn lean mixture ? Ans: Engine to burn lean mixture uses high compression ratio and the highly turbulent move¬ment of the charge is produced by the geometry of the combustion chamber. 39. Horse power of I.C. engines can be expressed as RAC rating, SAE rating, or DIN rating. To which countries these standards belong ? Ans: U.K., USA and Germany respectively. 40. What is the use of flash chamber in a vapour compression refrigeration cycle to improve the COP of refrigeration cycle ? Ans: When liquid refrigerant as obtained from condenser is throttled, there are some vapours. These vapours if carried through the evaporator will not contribute to refrigerating effect. Using a flash chamber at some intermediate pressure, the flash vapour at this pressure can be bled off and fed back to the compression process. The throttling process is then carried out in stages. Similarly compression process is also done in two separate compressor stages. 41. Why pistons are usually dished at top ? Ans: Pistons are usually hollowed at top to (i) provide greater spa'e for combustion, (ii) increase surface for flue gases to act upon, and (iii) better distribution of stresses. 42. What is the function of thermostat in cooling system of an engine ? Ans: Thermostat ensures optimum cooling because excessive cooling decreases the overall efficiency. It allows cooling water to go to radiator beyond a predetermined temperature. 43. What are the causes of failure of boiler tubes ? Ans: Boiler tubes, usually are made from carbon steel and are subject to (a) high rates of heat transfer,( b ). bending stresses due to uneven heating, especially at expanded or welded joints into headers or drums, © external erosion from burners and flue gas, (d) possible corrosion on the boiler side, and (e) occasional manufacturing defects. Failure may occur due to following reasons : (a) High thermal ratings may lead to rapid failure if the internal fluid flow is reduced for any reason. The resultant overheating leads to a failure by creep, characterised by the bulging of the tube with the eventual development of a longitudinal split. (b ) Fatigue cracking due to bending stresses occur. These are associated with change of section and/or weld undercut, where tubes are expanded or welded into headers. © Failure may arise due to overstressing of a reduced section of metal. (d) Sudden failure of the boiler tube due to corrosion arises from embrittlement of the carbon steel due to interaction between atomic hydrogen from the corrosion process and the iron carbide present in the steel. (e) Defects in tube manufacture, although far from being a regular occurrence, can be a cause of serious trouble. Lamination in boiler tubes or score marks arising from the cold drawing of tubes, give rise to premature failure and may promote corrosion at these regions. 44. What are the causes of failure of superheater tubes ? Ans: Superheater tubes are subjected to the most severe combination of stress, temperature and corrosive environment. In addition to high-temperature strength, resistance to corrosion is also important. For example, low-alloy ferritic steel such as -1/% Cr, 1% Mo would not be used at metal temperatures above 580°C because of inadequate resistance to corrosion and oxidation over a full service life of 100,000/150,000 hr. Failures in superheater tubes may arise from : (a) Prior fabrication history (b ) Faulty heat treatment © Consequences of welding (d) Overheating of the tube metal (e) Gas-side corrosion (f) Stress corrosion (austenitic steels). 45. Why supercritical boilers use less amount of steel compared to non-supercritical boilers ? Ans: Supercritical boilers do not head heavy drum for separation of steam from mixture of water and steam. 46. Out of electric heater and heat pump, which is economical in operation ? Ans: Heat pump. 47. Which furnace burns low-ash fusion coal and retains most of the coal ash in the slag? Ans: Cyclone furnace. 48. How the thickness of thermal boundary layer and thickness of hydrodynamic boundary layer related ? Ans: Ratio of their thickness = (Prandtl number)-1/3. 49. What is the effect of friction on flow of steam through a nozzle ? Ans: To decrease both mass flow rate and wetness of steam. 50. Why gas turbine power plant needs efficient compressor ? Ans: Because a large portion of turbine work is eaten away by compressor and its inefficiency will affect net power output and cost of generation. 51. Why rockets using liquid hydrogen have higher specific impulse compared to liquid hydrocarbon ? Ans: Liquid hydrogen has higher burning velocity. 52. Why axial flow compressor is preferred for gas turbines for aeroplanes ? Ans: Because it has low frontal area. 53. What is the effect of inter cooling in gas turbines ? Ans: It decreases thermal efficiency but increases net output. 54. Why iso-octane is chosen as reference fuel for S.I. engines and allotted 100 value for its octane number ? Ans: Iso-octane permits highest compression without causing knocking. 55. Why thermal efficiency of I.C. engines is more than that of gas turbine plant ? Ans: In I.C. engine maximum temperature attained is higher than in gas turbine. 56. Which are the reference fuels for knock rating of S.I. engines ? Ans: n-heptane and ISO-octane. 57. When effect of variations in specific heats is considered then how do maximum temperature and pressure vary compared to air standard cycle ? Ans: Temperature increases and pressure decreases. 58. Quantities like pressure, temperature, density, viscosity, etc. are independent of mass. What are these called ? Ans: Intensive properties. 59. The amount of radiation emitted per scm per sec is called .... ? Ans: Emissive power. 60. In convection heat transfer, if heat flux intensity is doubled then temperature difference between solid surface and fluid will ? Ans: Get doubled. 61. How you can define coal ? Ans: Coal is a naturally occurring hydrocarbon that consists of the fossilised remains of buried plant debris that have undergone progressive physical and chemical alteration, called coalification, in the course of geologic time. 62. Which pollutant is major greenhouse gas and what is its effect ? Ans: CO is major greenhouse gas and it traps the radiation of heat from the sun within earth's atmosphere. 63. In order to increase efficiency and reduce CO emissions and other emissions, clear coal technologies are receiving major attention. What are these ? Ans: (i) Advanced pulverised and pressurised pulverised fuel combustion. (ii) Atmospheric fluidised bed combustion and pressurised fluidised bed combustion. (iii) Supercritical boilers. (iv) Integrated gasification combined cycle systems. (v) Advanced integrated gasification, including fuel cell systems. (vi) Magneto hydrodynamic electricity generation. 64. What are the important operational performance parameters in design of fuel firing equipment ? Ans: Fuel flexibility, electrical load following capability, reliability, availability, and maintenance ease. 65. What is the differenc between total moisture and inherent moisture in coal ? Ans: The moisture content of the bulk as sampled is referred to as total moisture, and that of the air dried sample is called inherent moisture. 66. Proximity analysis of coal provides data for a first, general assessment of a coal's quality and type. What elements it reports ? Ans: Moisture, volatile matter, ash and fixed carbon. 67. Ultimate analysis of coal is elementary analysis. What it is concerned with ? Ans: Carbon, hydrogen, nitrogen, and sulphur in coal on a weight percentage basis. 68. Explain the difference between AFBC, BFBC, PFBC and PCFB in regard to fluidised bed technologies. Ans: AFBC (Atmospheric fluidised bed combustion) process consists of forming a bed of inert materials like finely sized ash or ash mixed with sand, limestone (for sulphur removal), and solid fuel particles in a combustor and fluidising it by forcing combustion air up through the bed mixture. The gas flows thorugh bed without disturbing particles significantly but gas velocity is high enough to support the total weight of bed (fluidisation). At slightly higher velocity excess gas passes through the bed as bubbles (fluidised bed) and gives the bed the appearance of a boiling liquid. Bubbling fluidised bed combustion (BFBC) has a defined height of bed material and operates at or near atmospheric pressure in the furnace. Pressurised fluidised bed combustion (PFBC) system operates the bed at elevated pressure. Exhaust gases have sufficient energy to power a gas turbine, of course, gases need to be cleaned. In fluidised combustion, as ash is removed some unburned carbon is also removed resulting in lower efficiency. In circulating fluidised bed combustion (CFBC) system, bed is operated at higher pressure leading to high heat transfer, higher combustion efficiency, and better fuel feed. Circulating fluidised beds operate with relatively high gas velocities and fine particle sizes. The maintenance of steady state conditions in a fast fluidised bed requires the continuous recycle of particles removed by the gas stream (circulating bed). The term circulating bed is often used to include fluidised bed sys¬tems containing multiple conventional bubbling beds between which bed material is exchanged. 69. What for Schmidt plot for is used in heat transfer problems ? Ans: Schmidt plot is a graphical method for determining the temperature at any point in a body at a specified time during the transient heating or cooling period. 70. In which reactor the coolant and moderator are the same ? Ans: Pressurised water reactor. 71. Which reactor has no moderator ? Ans: Fast breeder reactor. 72. What are thermal neutrons ? Ans: Thermal neutrons are slow neutrons (having energy below 1 eV) which are in thermal equilibrium with their surroundings. 73. What is big advantage of fast breeder reactor ? Ans: It has rapid self breeding of fissile fuel during the operation of the reactor, and thus, it offers about sixty times the output with same natural uranium resources through ordinary non-breeder nuclear reactor. 74. What is the purpose of biological shield in nuclear plants ? Ans: Biological shield of heavy concrete prevents exposure to neutrons, beta rays and gamma rays which kill living things. 75. Which two elements have same percentage in proximate and ultimate analysis of coal? Ans: Moisture and ash. 76. On which analysis is based the Dulong's formula for the heating value of fuel ? Ans: On ultimate analysis. 77. Which element causes difference in higher and lower heating values of fuel ? Ans: Hydrogen. 78. Which heating value is indicated by a calorimeter and why ? Ans: Gross heating value because steam is condensed and heat of vapour formed is recovered. 79. State the difference between ultimate and proximate analysis of coal ? Ans: In ultimate analysis, chemical determination of following elements is made by weight: Fixed and combined carbon, H, O, N, S, water and ash. Heating value is due to C, H and S. In proximate analysis following constituents are mechanically determined by weight. Moisture, volatile matter, fixed carbon and ash. Heating value is due to fixed carbon and volatile matter. 80. What is fuel ratio ? Ans: Fuel ratio is the ratio of its % age of fixed carbon to volatile matter. 81. How the analyses and calorific values of fuels can be reported ? Ans: It may be reported as (a) as received or fired (wet) basis (b ) dry or moisture free basis © combustible or ash and moisture free basis 82. What is the difference between nuclear fission and fission chain reaction. Ans: The process of splitting of nucleus into two almost equal fragments accompanied by re¬lease of heat is nuclear fission. Self sustained, continuing, sequence of fission reactions in a con¬trolled manner is fission chain reaction. 83. Explain difference between fissile and fertile materials. Ans: The materials which can give nuclear fission e.g. U 35, Pu 39, U 33 are fissile materi¬als. Fertile material itself is not fissionable, but it can be converted to a fissionable material by irradiation of neutrons in a nuclear reactor. 84. What do you understand by fuel cycle in nuclear plants ? Ans: Fuel cycle a series of sequential steps involved in supplying fuel to a nuclear power reactor. The steps include : Mining, refining uranium, fabrication of fuel elements, their use in nuclear reactor, chemical processing to recover remaining fissionable material, re-enrichment of fuel from recovered material, refabrication of new fuel elements, waste storage etc. 85. What is heavy water and what is its use in nuclear plants ? Ans: Water containing heavy isotopes of hydrogen (Deuterium) is known as heavy water. Heavy water is used as a moderator. Heavy water has low cross section for absorption of neutrons than ordinary water. Heavy water slows down the fast neutrons and thus moderates the chain reaction. 86. What is a converter reactor ? Ans: A reactor plant which is designed to produce more fuel than it consumes. The breeding is obtained by converting fertile material to fissile material. 87. Explain nuclear reactor in brief. Ans: A plant which initiates, sustains, controls and maintains nuclear fission chain reaction and provides shielding against radioactive radiation is nuclear reactor. 88. What is the difference between conversion and enrichment ? Ans: The process of converting the non fissile U 38 to fissile U-35 is also called "Conversion". The material like U 38 which can be converted to a fissile material by the neutron flux is called "fertile material". The conversion is obtained within the nuclear reactor during the chain reaction. Enrichment is the process by which the proportion of fissile uranium isotope (U-35) is increased above 0.7% (original % in natural uranium). The concentration of U-35 in the uranium hexafluoride is increased from the 0.7% in natural uranium to to 4%. This is called enrichment and is accomplished in an enrichment plant. 89. Disposal of radioactive waste materials and spent fuel is a major and important technology. How the waste radioactive material is disposed off ? Ans: Nonusable fission products are radioactive and take short/medium/long time for radioactive decay to reach safe level of radioactivity. Accordingly three methods of disposal are : (a) Zero or low radioactivity material is dispersed or stored without elaborate shielding. (b ) Medium radioactivity material is stored for short duration of about 5 years to allow decay of radioactivity. © High radioactive material. They are stored in water for several months to permit radioactive decay to an accepetable low level. 90. Which nuclear reactor uses water as a coolant, moderator and reflector ? Ans: Pressurised water reactor. 91. Which reactor produces more fissionable material than it consumes ? Ans: Breeder reactor. 92. Which reactor uses natural uranium as fuel ? Ans: Gas cooled reacator. 93. Which reactor uses heavy water as moderator ? Ans: CANDU. 94. Which reactor requires no moderator ? Ans: Breeder reactor. 95. Which reactor uses primary coolant as fluoride salts of lithium, beryllium, thorium and uranium ? Ans: Molten salt breeder reactor. 96. Why an increase in area is required to produce an increase of velocity in case of supersonic flow ? Ans: Increase in area for increase in velocity for supersonic flow is required because the density decreases faster than velocity increases at supersonic speeds and to maintain continuity of mass, area must increase. 97. Under what circumstances would there be an increase in pressure in a diver¬gent nozzle ? Ans: For subsonic flow at inlet section of a diffuser a lower velocity and higher pressure will exist at the exit section. For supersonic isentropic flow at the inlet section a higher velocity and lower pressure will exist at the exit but if a shock wave occurs in the diffuser then a higher pressure will exist at the exit. 98. Why water can't be used as refrigerant for small refrigerating equipment ? Ans: The refrigerant should be such that vapour volume is low so that pumping work will be low. Water vapour volume is around 4000 times compared to R- for a given mass. 99. Which parameter remains constant in a throttling process ? Ans: Enthalpy. 100. What is the difference between isentropic process and throttlinglprocess ? Ans: In isentropic process, heat transfer takes place and in throttling process, enthalpy before and after the process is same.
  10. 2 points
    AKS15

    Mechanical Engineering Quiz 1

    How will the balance reading remain same in that "Bucket-Spring balance" question. Reading should increase perhaps.
  11. 2 points
    • Graded Mode
    • 10 minutes
    • 20 Questions
    • 122 Players
    lets check your knowledge on production engineering We will be starting the online quiz series This is the first among the same...We are testing the system One lucky winner among the top scorer will get "I am a Mechanical engineer t-shirt" The winner will be choose from lucky draw This t-shirt Please encourage all your friends to participate... More the participants...more prizes will be offered in the coming quiz series. The quiz will be closed any time between 28th to 30th July...and result and the winner with lucky draw will be declared in first week of August All the best
  12. 2 points
    Thanks for writing here,welcome on https://mechanical-engg.com/ look forward for your active participation.
  13. 2 points
    Welding is a process of joining similar and dissimilar metals or other material by application of heat with or without application of pressure and addition of filler material. It is used as permanent fasteners. Welding is essential process of every manufacturing industries. In fact, the future of any new metal may depend on how far it would lend itself to fabrication by welding. The weldability has been defined as the capacity of being welded into inseparable joints having specified properties such as definite weld strength proper structure. The weldability of any metal depends on five major factors. These are melting point, thermal conductivity, thermal expansion, surface condition, and change in microstructure. Types of welding: Basically welding may be classified into three types. 1. Plastic welding: In plastic welding or pressure welding process, the pieces of metal to be joined are heated to a plastic state and then forced together by external pressure. These welding are also known as liquid-solid welding process. This procedure is used in forge welding and resistance welding. 2. Fusion welding: In the fusion welding or no pressure welding process, the material at the joint is heated to a molten state and allowed to solidify. These welding are also known as liquid state welding process. This includes gas welding, arc welding, thermite welding etc. 3. Cold welding: In this welding process, the joints are produced without application of heat, but by applying pressure which results diffusion or inter-surface molecular fusion of the parts to be joined. It is also known as solid state welding process. This process is mainly used for welding nonferrous sheet metal, particularly aluminum and its alloys. This includes ultrasonic welding, friction welding, Explosive welding etc. 4 Main Welding Processes: 1. Arc Welding (Fusion Welding): In this type of welding process, weld metal melted from the edges to be joined and allow to solidifies from the liquid state and usually below the recrystallization temperature without any applied deformation. Arc welding is most extensively employed method of joining metal parts by fusion. In this welding the arc column is generated between an anode, which is the positive pole of power supply, and the cathode, the negative pole. When these two conductors of an electric circuit are brought together and separated for a small distance such that the current continues to flow through a path of ionized particles called plasma, an electric arc is formed. This ionized gas column acts as a high resistance conductor that enables more ions to flow from the anode to the cathode. Heat is generated as the ions strike the cathode. This heat used as melting of metal to be joined or melting the filler metal which further used as joining material of welding metal. The electrode is either consumable or non-consumable as per welding requirement. The temperature at the center of the arc being 6000 OC to 7000OC 2. Gas Welding: The gas welding is done by burning of combustible gas with air or oxygen in a concentrated flame of high temperature. As with other welding methods, the purpose of the flame is to heat and melt the parent metal and filler rod of a joint. It can weld most common materials 3. Gas Metal arc welding (MIG): This welding is also known as metal inert gas welding. In this type of welding a metal rod is used as one electrode, while the work being welded is used as another electrode. It is a gas shielded metal arc welding which uses the high heat of an electric arc between a continuously fed, consumable electrode wire and the material to be welded. Metal is transferred through protected arc column to the work. In this process the wire is fed continuously from a reel through a gun to constant surface imparts a current upon the wire. In this welding the welding area is flooded with a gas which will not combine with the metal. The rate of flow gas is sufficient to keep the oxygen of the air away from the hot metal surface while welding is being done. 4. Gas Tungsten Arc Welding (TIG): This welding is also known as tungsten inert gas welding is similar to the MIG in that is uses the gases for shielding. This arc welding process uses the intense heat of an electric arc between a no consumable tungsten electrode and the material to be welded. In this process the electrode is not consumable during welding process and gas is used to protect the weld area form atmospheric air.
  14. 2 points
    They both are the metal forming processes. When plastic deformation of metal is carried out at temperature above the recrystallization temperature the process, the process is known as hot working. If this deformation is done below the recrystallization temperature the process is known as cold working. There are many other differences between these processes which are described as below. Difference between Hot Working and Cold Working: S.No. Cold working Hot working 1 It is done at a temperature below the recrystallization temperature. Hot working is done at a temperature above recrystallization temperature. 2. It is done below recrystallization temperature so it is accomplished by strain hardening. Hardening due to plastic deformation is completely eliminated. 3. Cold working decreases mechanical properties of metal like elongation, reduction of area and impact values. It increases mechanical properties. 4. Crystallization does not take place. Crystallization takes place. 5. Material is not uniform after this working. Material is uniform thought. 6. There is more risk of cracks. There is less risk of cracks. 7. Cold working increases ultimate tensile strength, yield point hardness and fatigue strength but decreases resistance to corrosion. In hot working, ultimate tensile strength, yield point, corrosion resistance are unaffected. 8. Internal and residual stresses are produced. Internal and residual stresses are not produced. 9. Cold working required more energy for plastic deformation. It requires less energy for plastic deformation because at higher temperature metal become more ductile and soft. 10. More stress is required. Less stress required. 11. It does not require pickling because no oxidation of metal takes place. Heavy oxidation occurs during hot working so pickling is required to remove oxide. 12. Embrittlement does not occur in cold working due to no reaction with oxygen at lower temperature. There is chance of embrittlement by oxygen in hot working hence metal working is done at inert atmosphere for reactive metals.
  15. 2 points
    This is one important point missing in the two previous answers. The "cc rating" of an engine is a volume measure, as previously stated, but it is not the actual cylinder volume. Rather, it is the swept volume of the cylinder, also called the "displacement" of the cylinder. The actual cylinder volume is always somewhat greater than this value because the piston at TDC does not leave zero cylinder volume. The small volume remaining at TDC is called the "clearance volume," the volume available for the early stage of combustion. DrD
  16. 2 points

    6,594 downloads

    Powerpoint Notes on Metal forming Topic includes— Hot &Cold working Forging Extrusion Rolling Drawing
  17. 2 points
    HAI Amit kumar, This is hari can u please explin me in breif About this line"To reduce the internal pressure"
  18. 1 point
    The Least count refers to the smallest measurable length by the vernier caliper. It can be found by dividing the difference of 1 Main scale division by the number of divisions between two vernier scale values (usually 10). i.e 1 Main Scale Division/10.
  19. 1 point
    oil is the best lubricant because it lubricates all parts which are made by electrons and metallic parts.it serves as a self lubricant in high temperature.its serves as a incompressible component,
  20. 1 point
    HKS

    What Makes A Ship Move?

    I agree that the description of large interconnected systems is difficult for most of us. In my opinion, this lack of skill responds to two main factors: First, the mechanical engineering curriculum usually devotes more time to the teaching and evaluation of very specific topics and less time to the analysis of large interconnected systems. Second, the industry, for the most part, demands specialized personnel either to solve problems or to make small improvements in subsystems in order to obtain a small but continuous improvement that allows them to remain competitive at the lowest possible cost. Regarding the issue of education, I do not have any complaints, after all, whoever wants to learn has all the resources and tools at their disposal to do so. Similarly, regarding the behavior of the industry, I do not complain, it is a behavior that responds to more factors (economic, social and political) which I do not intend to mention here. It is known that one can succeed in the exercise of the profession in different ways and one of them is to become an expert in a specific area. So if the educational system, neither the industry nor the economic incentive are of interest for the analysis of large interconnected systems, I suppose that only people who have a desire to understand and describe these systems will do so. I believe that we all have the ability to describe those systems and if so, we would surely notice an incredible advance in the technological development since great advances are a consequence not of the improvement of very specific things but of the proposition of new approaches for the solution of a problem. The main idea that I take away after reading your article is to try to describe through equations a complete system and in doing so identify which areas I lack knowledge or skill. One point that caught my attention is the fact that all the thrust generated by the turbine reaches a single point (the seat of the thrust bearing) that although it was obvious I had not stopped to think about it and its importance in the structural design of the ship's hull. Finally, I have a question, if one wanted to develop the ability to describe systems at that level, is it enough to take systems at random and try to describe them with equations or are there books that teach methods of analyzing those systems that would be worth studying? If so, I would appreciate a recommendation. Best regards, HKS.
  21. 1 point
    Maybe that might work. Measure the thermal loss in watts for your particular time interval in which your cooling unit has to operate. Multiply that thermal/ power loss by the time interval to calculate energy/ enthalpy mostly measured in Joules or BTU.
  22. 1 point
    SAJAL KUMAR DAS GUPTA

    Machine Vibration

    Please explore 1.Weather machine RPM can be changed. 2.Consider resonance factor.Look for possibility of change in natural frequency of machine structure/Foundation.
  23. 1 point
    What is the difference between pump and compressor ? When we use pump and When we use compressor? You can answer this questionYou can like the best answerYou can share the question.....You can get updates of new questions on Facebook linkedin twitter & google plus
  24. 1 point
    Identify the load. In this case, wind load. Wind load could be calculated from ASCE 7 or EN 1991-1-4 or other relevant codes. The wind load (essentially pressure) multiply by effective area (5m x 2m of signboard in your drawing) to get a working wind force. Multiply this with 3 m height, to get working moment at the base. Let say using structural steel with yield strength of 240 MPa, safety factors 3, you get allowable working stress of 80 MPa. Check the cross-sectional properties (second moment area, radius, thickness) to get this allowable working stress. Stress = M x r / I For a thin cylinder, I = pi x r^3 x thickness. Then you get the dimension needed for the pole/support.
  25. 1 point
    • Graded Mode
    • 15 minutes
    • 17 Questions
    • 151 Players
    Test your mechanical engineering concepts You need to login to take this quiz
  26. 1 point

    8,498 downloads

    Fit_and_Dimensional_Tolerances_Mechanical_Engineering_Drawing Source Ashish K Darpe Department of Mechanical Engineering IIT Delhi Thanks to Mr. Ashish K Darpe Regards Saurabh Jain
  27. 1 point

    From the album: All in a picture!

    All of the basic hydraulic valves and their symbols
  28. 1 point
    What is the purpose of using the governor in CI engine? Which are the two major type of governors? You can answer this question. You can like the best answer. You can share the question You can get updates of new questions on Facebook linkedin twitter & google plus
  29. 1 point
    Is there any wind? If wind blown horizontally, a vertical plate will cool faster. If no wind, theoretically it's all the same due to same exposure area. IRL, have you ever saw people drying their clothes sideways?
  30. 1 point
    to have constant velocity, the gear pair must have same module and same no. of teeth
  31. 1 point
    A boiler may be defined as a closed vessel in which steam is produced from water by combustion of fuel. Boiler is used in many industries such as in steam power generation, in sugar industries, in textile industries for sizing and bleaching etc. and in many other chemical industries. Earlier it was mainly used in power generation in steam engine. Boiler is also known as steam generator. The primary requirement of boilers is the water, which must be contained safely and the steam must be safely delivered in desired condition. In a boiler, many parts and fittings of mounted, which are mounted on the boiler for its proper and safe functioning. These are as follow 1. Water level indicator 2. Pressure gauge 3. Safety valves 4. Stop valve 5. Blow of cock 6. Feed check valve 7. Fusible plug Types of boilers: Boiler may be classified in following types. According to the axis of boiler 1. Horizontal boiler: If the axis of boiler is horizontal, it is known as horizontal boiler. Example Babcock and Wilcox boiler 2. Vertical boiler: If the axis of boiler is vertical, it is known as vertical boiler. The main advantages of vertical boiler that it is easy to maintain. Example : Cochran boiler 3. Inclined boiler: If the axis of boiler is inclined, it is known as inclined boiler. According to fire of boiler: 1. Externally fire boiler: If the furnace is outside of the boiler shell, it is known as externally fired boiler. Example Babcock and Wilcox boiler 2. Internally fire boiler: If the furnace is inside the shell, it is known as internally fired boiler. Example Lancashire boiler According to pressure of boiler: 1. High Pressure boiler: If the boiler pressure is above 80 MPa, the boiler is known as high pressure boiler. Example Benson boiler 2. Low pressure boiler: If the boiler pressure is below 80 MPa, the boiler is known as low pressure boiler. Example Cochran boiler According to Circulation of water 1. Forced circulation boiler: If the circulation of water is done by a feed pump, the boiler is known as forced circulation boiler. Example Velox boiler 2. Natural circulation boiler: If the circulation of water is done by natural convection, this is known as natural circulation boiler. Example Lancashire boiler According to circulation of gases: 1. Fire tube boiler 2. Water tube boiler 1. Fire tube boiler: In this types of boiler water flow surrounding the tubes and the hot flue gases flow through the tubes. The heat passes form the tube to surrounding water which is used to heat the surrounding flowing water and convert it into steam. Example Lancashire boiler 2. Water tube boiler: In this boiler, water flow through the tubes which are surrounded by hot flue gases. These flue gases used to heat the water and convert it into steam. Example Lamont Boiler
  32. 1 point
    • Graded Mode
    • 5 minutes
    • 10 Questions
    • 240 Players
    Questions on the concepts of Machine Design
  33. 1 point
    In an open loop system input is independent of output. They are simple and fast process... In closed loop system input is dependent on output. They are complex and slow process... Closed loop system in general are provided with sensors that serve the purpose of controlling the input..
  34. 1 point
    Define "Mechanical property" of engineering material State any 6 mechanical properties, give their definition and one example of material possessing the property You can answer this question. You can like the best answer. You can share the question You can get updates of new questions on Facebook linkedin twitter & google plus
  35. 1 point
    As Mr Karim has rightly answered,In second and fourth angle projection viewing and projected plane are different than that of first and third angle projection,There is possibility that the one projection may overlap the other one creating confusion to understand the drawing.
  36. 1 point
    Tolerances are allowed so it aid in interchangeability of the product during use, assembly and when subjected to different conditions. It is most derived from the purpose of which the product is to be used for. Environment i.e temperature , application depending on speeds, assembly so it can suit global use.
  37. 1 point
    There are lots of them out there, just to name a few: . Maximum principal stress theory (Rankine's theory) Maximum shear stress theory (Guest's theory) Maximum principal strain theory (Saint's theory) Maximum strain energy theory (Haigh's theory) Maximum distortion energy theory (Hencky&Von Mises theory) This presentation is a good starting point.
  38. 1 point
    Jay shah

    What is mohr's circle used for ?

    Mohr circle is used to determine the value of state of stress in the planes of different orientation.
  39. 1 point
  40. 1 point
  41. 1 point
  42. 1 point
  43. 1 point
    A Community Built on False Values This may well prove to be the least popular thing I ever post on this blog because what I have to say may offend many. I do not say it with the intent to offend, but because I am compelled to give a warning. One of the most interesting things that has developed from my blog, Mechanics Corner, here on the ME Forum has been the opportunity to correspond directly with a modest number of readers. This has included both young men and young women scattered across India, Southeast Asia, the Middle East, and the rest the world. The majority of them are still students, still studying to become mechanical engineers. I have been somewhat amazed at the number of them that talk about (1) their strong intention to go on to graduate studies, and (2) their desire and intention to publish research while still in school, in some cases even below the baccalaureate level. I do not wish to discourage people from graduate study nor do I wish to dissuade them from publishing their work, but both of these strike me as somewhat inappropriate for an undergraduate engineering student. It appears to me that many are caught up in the ethos of academia which is misleading them with respect to what is really of value as preparation for an engineering career. Let me elaborate. Let us begin by considering two words, science and engineering. Wikipedia tells us that science means knowledge, coming from the Latin root word scientia. The same source also tells us that engineering, which is derived from the Latin root ingenium, means "cleverness," and the second root word ingeniare, meaning "to contrive or devise." These definitions point to the fundamental distinction between science and engineering. The scientists, particularly the physicist, seeks to know, particularly to find new knowledge. The engineer, on the other hand, seeks to apply existing knowledge to the solution of problems of interest to society. It is evident that these two fields are very close to each other. We cannot be clever and inventive without knowing what has been known for ages. But engineering is about the application of knowledge, while science is about the search for knowledge. Academia has lost its way. This is certainly true in the USA, in Europe, and it appears to be true in the rest of the world as well. Where the college or university once saw its role as preserving and passing along the best of human knowledge, to prepare people for a productive life, the schools have since become big businesses, focus on their influence, their endowments, and their prestige. In the past, faculty were valued for their knowledge and their ability to teach, that is, to pass along knowledge to those who studied with them. Today this has changed. Faculty are now valued for what they contribute to the image of the institution, for their reputations, for their publications which reflect favorably on the institution, and usually most of all, for the grants and other funding that they bring to the institution. (Notice that there is nothing about teaching in the present day evaluation of faculty; this is sad but it is absolutely true.) In order for a faculty member to advance today, he must be interested in and doing those things which are seen as contributing to the image of the institution. Foremost for faculty, this means grant writing, research, and publication. It explicitly excludes professional engineering practice. Thus, the vast majority of engineering faculty today have little or no experience as practicing engineers. They have a lot of experience in obtaining funding, in writing papers, in giving presentations to prestigious audiences and other similar activities that will reflect favorably on their schools. But most have never solved an actual engineering problem from industry. The reader may ask, "so how does this affect the students?" The answer is simple. The faculty talk about and praise their research, publications, and funding, and students are inclined to take these things as their own goals for the future. Thus if a student sees a faculty member advancing and doing well by publishing a lot of research (and no one ever evaluates the true value of most of that research), the student is inclined to assume that this should be their goal, their path to success as well. Nothing could be further from the truth for a baccalaureate or masters level engineer. Most of us have heard the phrase "engineering research," and what these faculty members are doing is often described as "engineering research." But is this really engineering research as it is practiced in industry? Not at all. Over the years, I have worked in industrial "research organizations" of many sorts, but very, very little of the work done in those organizations is publishable for the simple reason that it is not fundamentally new. Engineering research, as practiced in industry, in most cases means going to the library to see if you can find a paper (or a book) where the problem you are currently dealing with has been previously solved, or at least a very similar problem that can serve as a model for you. If we talk about experimental engineering research, that usually implies experiments and measurements directed to answer very specific questions about the problem at hand, and almost never about fundamental physics or other "new" knowledge. Let me cite a few examples of engineering research that I have been involved with personally: 1. Many years ago, I conducted an experimental study of the flexural vibration of a sonar transducer head under a U.S. Navy contract. The transducer head is that part of the sonar device that comes in direct contact with the water in order to transmit, or receive, a sound wave. For analytical purposes, the sonar head is usually modeled as a rigid body, but it was generally understood that being a real, physical body with flexibility, there would be a degree of flexing involved as it moved rapidly back and forth. My research quantified the extent of that flexing and suggested the possible need for further stiffening of the design. There was no fundamentally new information; no new phenomenon were discovered, and there was nothing publishable other than a report to the U.S. Navy. 2. At one time, I was employed as a research engineer at the Homer Research Laboratories run by Bethlehem Steel Corporation, conducting research in cold rolling of steel strip. My particular assignment was to develop a mathematical model and a computer simulation based on that model for the multistand cold rolling mill. A significant part of my "research" was simply going to the library to search for work previously done by others about modeling the phenomenon that occur in the roll gap where the thickness reduction actually occurs. My "research" was largely the application of work done by numerous others, and it was not in the least bit publishable, although it was a valuable engineering tool for my employer. 3. I once worked for a company that assembled engine-generator packages, using both engines and generators made by others. My principal responsibility in that position was the torsional vibration analysis of these machines, essentially the forced response analysis of a rather complicated, multi-degree of freedom vibration system, done for every machine we shipped out. Even though this was after I had completed my college work, I had never studied systems quite like that before. So "engineering research" became a matter of learning about multidegree of freedom vibration analysis, becoming familiar with the modal method, learning about the Holzer calculation technique, and refreshing my memory about the application of Fourier series. Not a bit of this was new. Multidegree of freedom vibration goes back at least as far as the Lord Rayleigh in the mid-19th century if not earlier, the Holzer calculation dates from the early 20th century, and Fourier series date from the early 19th century. So, while there was nothing new in any of this, it was necessary "engineering research" in order to give me the capability to perform my assigned tasks. 4. While at the engine-generator company, I was asked to create a mathematical model and numerical dynamic simulation for a complex system consisting of a diesel engine with the governor, a generator with its exciter, and induction motor, and a pump. This system is the emergency core cooling system for a nuclear power plant. In the event of the loss of regular coolant flow to the core, the standby diesel engine is started and the speed stabilized by the governor. After this is done, the exciter is activated to apply the field to the generator windings, and power is delivered to the induction motor. This step again requires stabilizing the speed by the governor. The induction motor is rigidly coupled to the pump which provides water to cool the core. All of these steps must happen very quickly, typically in about 15 seconds, so there is a lot going on. In my own engineering education, I had learned about basic circuit theory, but I never studied much about motors and generators. Thus my "engineering research" at this point included a lot of study of motor/generator theory, all information that had been known since the early 20th century. There was nothing about the eventual simulation that was publishable research, but it was a valuable engineering tool for my company. The point of the four little stories above is simply that, in most cases of engineering practice, "engineering research" is simply a matter of finding existing knowledge so that it may be applied to a current problem of interest to the employer. Only in the most rare circumstances is it about the search for new knowledge, knowledge previously unknown to anyone. And yet it is this last, the search for new knowledge that is the focus of most academic research. With some exceptions, academic research is rarely relevant to the actual problems of industry today. Let me also make a few comments about graduate education. Without going into the broad topic of the degradation of education at all levels, let it suffice to say that there are, broadly speaking, two categories of engineers. Let us call the first category the Project Engineer, almost always an individual with a baccalaureate degree in engineering. The second category, which we will call the Advanced Engineer, is usually a person with a Masters or doctoral degree in engineering, although baccalaureate degree holders are not entirely excluded. The Project Engineer has broad responsibilities for many types of projects, including design, manufacturing considerations, obtaining materials, meeting delivery schedule requirements, and resolving difficulties as they arise. He relies heavily on codes and standards in his design work, often employing "rules of thumb" instead of rigorous calculation; this is how the vast majority of engineering gets done. The Project Engineer draws on his engineering education background for understanding, but rarely makes a calculation and relies heavily on engineering intuition to do his job. The Advanced Engineer is one who has chosen to deepen his technical expertise, and enjoys dealing with more complicated problems, particularly in terms of mathematical analysis. The Advanced Engineer may, but often does not, have broad project responsibilities, but he is expected to be more rigorous in his work and to have a greater knowledge base. He is often seen as a resource person for the Project Engineer. Industry in every country needs large numbers of Project Engineers; this is where the jobs are for most engineering graduates. Industry in every country needs a far smaller number of Advanced Engineers because their role is largely support for the Project Engineers. At times, when there is a great industrial surge, such as the USA experienced during the space program, there is a somewhat increased need for Advanced Engineers, but there is always a greater need for Project Engineers. Even when times are good, when industry is hiring many engineers, too much education can often be a disadvantage for a job seeker. The employer, seeking a Project Engineer, will often say when considering a person with an advanced degree, "This person has more education than my position requires. This candidate is likely to become dissatisfied with the job after I invest in training him to do it. It is better to hire someone with less education who will remain with my company indefinitely." I have seen this happen, and I have been a victim of it myself. Thus I encourage all to think carefully about their goals and their potential employment prospects when considering whether to go to graduate school or not. Let me tell one more personal experience to illustrate the difference between the Project Engineer and the Advanced Engineer. 5. Not quite 20 years ago, I was employed by a manufacturer of aerospace components. A dispute arose with the US Federal Aviation Authorities (FAA) regarding the design adequacy of a particular component in one of our products. The component was a push rod, bent into what is sometimes called a "dog-leg" configuration (a sort of Z-shape), and is operated in both tension and compression. The FAA inspector argued that the pushrod might fail by buckling, and our project engineer was unable to convince him otherwise. The problem came to me to justify our design. Now buckling is an instability phenomenon, and I saw immediately that because of the bent configuration of the rod, there was no possibility of instability but only further bending, and hence no possibility of buckling. This argument, however, did not persuade the FAA inspector. My only option, therefore, was to calculate the deflections of the pushrod when operated in compression. This is not a simple calculation, and no one in my company knew how to do it. I turned to the classic book on elastic instability of structures by the great Ukrainian engineer Stephen Timoshenko where I found a similar, slightly simpler, problem that I could use as a model. Following Timosheno's work, I made the calculations to show that there simply was no buckling potential, and that further the very most elementary deflection calculations gave an almost identical result. The FAA inspector was unable to respond. I mentioned this last personal experience in part to show (1) my role as the Advanced Engineer in support of the Project Engineer, (2) and also to show how, in this case, "engineering research" amounted largely to resorting to the literature for results almost 100 years old. Once again, it must be noted that this "research" produced no new results and was therefore not publishable, but it was worth a lot of money to my company. Well, if students are being misled by academia about the nature of actual engineering, what can they do about it? The answer is simple to describe, even though it may be more difficult to put into practice. The short answer is, "Look for actual engineering experience for yourself outside of academia." How is this accomplished? 1. One of the classic ways to gain real experience has always been to look for work opportunities during the summer or other school vacation period in actual industry. Now it is obvious that working as a sacker in a grocery store will not provide much useful experience for someone who aspires to be come a machine design engineer. But work in a factory, on an assembly line, or even just distributing parts to an assembly line, will provide much useful insight into the nature of engineering work, the work environment, the demands, the expectations, and the hazards. If if you cannot get engineering work as an undergraduate, there is valuable experience to be gained simply by working around engineers. 2. In the USA, many engineering colleges provide a work/study program called Cooperative Education (Co-Op for short) in which a student, usually beginning in the second year, goes to school for one term and then goes to work in some actual industrial environment for the next term, alternating this pattern until graduation. Many students spend all their Co-Op work terms with the same company, but others will sample several different companies. If a student does well during his work experiences, this often leads to a job offer at the end of his college education. By that time, the student understands what is expected of engineers in that particular company, and the company has a understanding of the value of that student as a permanent employee. If Co-Op is available at your school I strongly urge you to take advantage of it. 3. Look for part-time work while in school with some actual, industrial firm, where you can see and perhaps participate in actual engineering work. This is an additional burden to your school work, but the opportunity to see the connection between school work and engineering practice can be invaluable. (I had a student once who worked in a battery factory while he was taking my Theory of Machines course. He was seeing, and working with on an everyday basis, many of the exact mechanisms that we were studying in class. He got an extraordinarily good education out of the combination.) 4. The SAE (the organization formerly known as the Society of Automotive Engineers but now legally simply SAE) organizes and conducts many student design competitions for engineering students. A number of these are structured around the design and construction and eventually racing various types of small race cars. Although done within the academic context, this provides students with a real engineering experience. If your school has such a competition, I strongly urge you to be a part of it. If your school does not have such, then I urge you to ask the school to get involved with the SAE student design competitions. Let me close with one final story from my own experience, a story where I was simply an observer, not a participant at all. A company where I was employed hired two new graduate engineers, one from each of the two major engineering schools in my home state. One of the schools is known for being very practical and down to earth, while the other is known to be much more theoretical, more elegant, more research oriented. Each of these new employees was given a similar project to begin, the design of a small power transmission shaft. The graduate of the very down to earth engineering program got right to work, following steps he had learned in an undergraduate machine design class. He had an acceptable design in a matter of a few days. The graduate of the elegant, research oriented institution fumbled around for literally weeks, starting over time and again and essentially unsure how to proceed. He knew many of the things that needed to be considered, but he had no way to go about working through them systematically. It was very evident to me which one of these would make the better engineer. I urge all students therefore to keep their eyes clearly fixed on the goal of engineering (assuming that really is their goal) and not let research, publication, and advanced studies cloud their vision.
  44. 1 point
    saurabhjain

    Beautiful Jet Engine Design

    From the album: Engines

  45. 1 point
    Petrol get ignited with at low temp. But for diesel high temp is required for combustion. ..This sole purpose is not achieved by spark plugs so we go with compression ignition. ...thus we don't have spark plugs in diesel engine. ..
  46. 1 point
    Aakarshan Satheesh Kumar

    Explain why washers are used?

    Washers are used when bolting to make stronger the joint and to reduce bolt fatigue due to inconsistent loads. Any stretch or flattening of parts is likely to be less than the compression of the washer thus, the bolt won't loosen much.
  47. 1 point
    Athish Kumar

    AVANCED IC ENGINES

    11,636 downloads

    The Internal-Combustion Engine in Theory and Practice Volume I : Thermodynamics, Fluid Flow, Performance Second Edition, Revised by Charles Fayette Taylor Professor of Automotive Engineering, Emeritus Massachusetts Institute of Technology
  48. 1 point
    Khaled Zaky

    What is the function of a bearing?

    separate two rotating part reduce friction reduce heat generation carry force in radial or/and axial direction
  49. 1 point
    Welcome to the forums Felland Arthur :)
  50. 1 point
    mechlance4604

    Final Year Project

    very very good


×
×
  • Create New...